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Abstract-Stability analysis of multidevice amplifiers is made

on a generalized circuit comprising two n-ports with S-matrices

S (active devices) and S’ (passive networks) connected at n
interface ports. Open-loop transfer functions defined for a signal-
flow graph and its (n – 1) subgraphs of incident and reflected

waves at the interface ports are expressed in terms of det M.
and its minors, where M. =S’S– I.and In=nxn
identity matrix. It is shown that the Nyquist plots of the n
transfer functions completely characterize the number of right-
half complex-frequency-plane zeros of det Ikfn, and hence the
amplifier stability. Insertion of an ideal circulator and isolators at

the interface ports enables one to calculate the Nyquist plots and
voltage distributions of possible instabilities using commercially

available linear circuit simulators. Numerical simulations for two

types of parallel-operated GaAs FET amplifiers are performed

to verify the usefulness of the analysis to design-phase check on
multidevice amplifier stability.

I. INTRODUCTION

o DD-mode oscillations, also called push-pull-mode or

differential-mode oscillations, often cause troublesome

problems to parallel-operated devices and amplifiers such as

discrete power MOSFET’S, internally-matched power GaAs

FET’s and power MMIC amplifiers [1]–[3], since this type

of parasitic oscillations or instabilities not only gives rise to

spurious signals but also sometimes lead to catastrophic fail-

ures of active devices [1]. In order to avoid such instabilities,

design-phase analysis is very important.

Kassakian et al. [1] analyzed paralleled VHF power MOS-

FET’s by postulating a differential-mode operation of the

linear circuit and applying the Routh–Hurwitz criterion to

its characteristic polynomial zeros. Practical use of this

method, however, is limited to a case of lumped-constant

circuits with relatively small number of elements. Meanwhile,

Freitag et al. [2] analyzed cluster-matched power MMIC’S

with two parallel-operated GaAs FET’s by assuming an odd-

mode oscillation and calculating S1l (S -parameter) of the half

circuit. This method is attractive at microwave frequencies,

where lumped- and distributed-constant circuits intermingle

and S-parameters are most convenient to circuit designs. Based

on a signal-flow graph of S-parameters and the odd-mode

assumption, Takagi et al. [3] analyzed the oscillations in GaAs

power FET’s and power MMIC amplifiers consisting of two

parallel-operated FET’s from the viewpoint of loop oscillation.

The analysis methods in [2] and [3], however, are applicable
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only to a circuit configuration with symmetry, and the mode

of instabilities such as the odd-mode must be postulated a

priori. To be free from such limitations, a general yet practical

approach is desirable.

This paper presents a general and comprehensive method

of analyzing and simulating stability of multidevice amplifiers

including parallel-operated amplifiers, In Section II, stability

analysis is performed on a generalized equivalent circuit, in

which two n-pints representing active devices and passive

imbedding networks with S-matrices S and S’, respectively,

are connected at n interface ports. The circuit is viewed as a

multiloop feedback system with a signal-flow graph for node

signals of incident and reflected waves at the interface ports.

Defining n open-loop transfer functions for the original graph

and its subgraphs and obtaining explicit expressions for these

transfer functions in terms of S and S’, the stability of the

system is analyzed from the viewpoint of the Nyquist criterion.

It is to be mentioned that the stability of a multiloop

feedback system was discussed in a general manner by Mason

and Zimmerman [4] using the concept of graph determinant

and partial return differences for a signal-flow graph. Though

very suggestive, their analysis is not applicable to a circuit

analysis as in the present work where one cannot draw a full

and concrete signal-flow graph of the circuit.

In Section III, numerical stability simulations of amplifiers

with two and three parallel-operated GaAs FET’s are given

to demonstrate the usefulness of the present analysis. It is

also shown that insertion of an ideal circulator and isolators

at the interface ports enables us to use commercially-available

linear circuit simulation softwares, thereby greatly facilitating

numerical simulations.

II. STABILITY ANALYSIS OF

GENERALIZED AMPLIFIER CIRCUIT

A. Open- and Closed-Loop Transfer Functions

and Nyquist Criterion

Au amplifier consisting of multiple active devices and

passive imbedding networks can generally be represented

by an equivalent circuit as shcrwn in Fig. 1, where n-ports

with S-matrices S and S’, hereafter called the n-port S

and S’, are connected at interface ports 1 w n. Unless

otherwise mentioned, we regard the n-ports S and S’ as

representing the active devices and the passive imbedding

networks, respectively. We also regard S and S1 as having

no independent internal sources. Each active device can be

a single- or multi-port. Without loss of generality we can
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Firz.1. Generalized eauivdent circuit ofmultidevice amplifier, where n-pofis
S-red S’ represent ac~ivedevices andpassive imbeddhg networks, respec-
tively.

assume that no coupling exists between active devices within

the n-port S. Waves incident to and reflected from the n-ports

are denoted as ai and a;, and bi and b;, respectively, at port

i (1 ~ i ~ n). Apparently, the generalized circuit defined here

is the same as the generalized oscillator circuit of an n-port

active device [5], [6].

Fig. 1 can be considered as a multiloop feedback system. If

there is any feedback-loop instability within the system, some

of the interface ports must be involved in the unstable loop,

since the device activeness is the only source of instability.

If we regard {ai, bi, a~, b:, z = 1,2, ..., n} as node signals,

a signal-flow graph [4] of Fig. 1 can be written as in Fig, 2,

where ti= 1 and t;= 1 are the transmissions or the gains

of branches b; -+ a, and bt ~ aj (1 ~ i ~ n), respectively.

When we focus on ai and b; at port i, we have a signal-flow

graph of a feedback loop as shown in Fig. 3, where G~(.s)

is a transmission or a transfer function of the path a~ 4 bj

with s as the complex angular frequency. Regarding a~ as

a signal source, G~(s) is the open-loop transfer function of

the feedback loop. The closed-loop transfer function Hi(s) is

then given by

Hi(s) = G,(s) /[1 – G~(s)]. (1)

The open-loop transfer function defined here is equivalent

to the circular function (c-function) recently introduced by

Martinez et al. for S-parameter design of oscillators [7].

When we take a; as a signal source instead of ai, we have

a feedback loop similar to Fig. 3, with open- and closed-

loop transfer functions G:(s) and H:(s). Though the paths

including nodes (ai, bj) and (a:, b,) look different from the

signal-flow graph point of view, consideration of only n paths

containing the nodes ai and b; (z = 1,2,. . . . n) is enough to

examine the amplifier stability as will be clarified later.

A necessary and sufficient condition for the feedback loop

to be stable is that poles of Hi(s) or zeroes of 1 – Gi (s)

have negative real parts. The well-known Nyquist criterion is

a graphical method that enables us to check the feedback loop

stability from how the complex locus or the Nyquist plot of

–GZ(jW) encloses the point –1 + Oj [8].

For convenience of our analysis, we will restate the Nyquist

criterion in terms of Gi (jw). Let z and p be the numbers of

right-half s-plane zeros and poles of 1 – Gi (s), respectively.

1 – Gi (s) and Gi(s) have the same poles. Then the number

.................. . ................
\ b:l tl~l al, ~
/ u /

. ............................................................

OTHER NODES
......... .. ..... ... .... ... .... ..... .. ... .... ..... ... .... .... ..... .. ..... .... ... ..... .... ..... ..

Fig. 2. Signal-flow graph of Fig. 1 with (a,, b,, a:, b;, 1 S i ~ n) as node

signals.

‘F----7
‘=&

Fig. 3. Signal-flow graph of feedback loop with respect to a. and bj.

N. of clockwise revolutions around the critical point 1 + Oj

of the Nyquist plot of G~(@) for w varying from –cc to +cm

is given by

Nr=z–p. (2)

Negative N, means that the number of the counterclockwise

revolutions is equal to –N.. Thus, the knowledge of not only

NT but also p is required to see if z is equal to O or not.

Since zeros and poles of a physical network function occur in

complex conjugate pairs, the number of clockwise revolutions

of the Nyquist plot for w >0 (N,/2) is sufficient to apply the

stability criterion and we will hereafter regard this number as
N. when we consider only positive frequencies.

When p = O is guaranteed, the system is stable if Nr = O

or G~(-jti) does not enclose the point 1 + Oj clockwise.

Conversely the system is unstable if

Gi(jwl), > 1.

where WI is the angular frequency at which the Nyquist plot

Gi(jw) crosses the real axis clockwise (arg[Gi(jwl)] = 0°

and – 180° < arg[(dGi/dw)w = WI] < OO). This corresponds

to the criterion used in [2] and [3] for checking the stability

of amplifiers with a single loop. In amplifiers with multiple

loops, however, p = O is not always guaranteed.
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Fig. 4. Equivalent circuit corresponding to the signal-flow graph of Fig. 2
withtZ= O,tk=lforl<k #i~rzandt~=lforl<k <n.— . —

B. Expressions of Gi(jw) and Hi (jw) in Terms of S and S

It can be shown that the preceding open- and closed-loop

transfer functions at port i (1 ~ i ~ n) are given as a function

of S and S’ by

Gi(jW) = 1 + A/AZt(iWn), (3)

~~(~W) = –[1 + A~i(&Tm)/A], (4)

where

M. = S’S– In,

A = detlil.,

Aii(Mn) = cofactor of (i, i) component of A4m,

and In is the n x n identity matrix. The proof of (3) is

given in the Appendix. From (1) and (3) we obtain (4). The

expressions for G: (jw) and H; (jw) can be obtained by simply

interchanging S and S’ in (3) and (4). Note that A remains

unchanged since det (SS’ – Id) = det (S’S – In) = A.

An equivalent circuit corresponding to the signal-flow graph

in Fig. 2witht~=(), tk= lforl~k#i<n and

t; = 1 for 1 ~ k ~ n is shown in Fig. 4, where tie three-

port circulator inserted at port i between S and S’ is an ideal

circulator that has S-parameters Skm = 1 for (k, m) = (II,

I), (III, II), (I, 111) and Skm = O for other (k, m). Hence,

Gi (jw) is equal to the reflection coefficient SII at port I of the

circulator. Such equivalence is found very convenient to the

numerical simulation described in Section III, since insertion

of an ideal circulator enables one to calculate Gi (j w) using

the same CAD software as for the amplifier design.

C. Open-Loop Transfer Functions in Subgraphs

Ifwesett1=t2 =... = tk-1 = O in Fig. 2, we obtain a

subgraph [4], called here the k-th subgraph. The subgraph may

retain some of the feedback loops in the original graph, With

al=az=... = ak _ I = O, we define an open-loop transfer
function denoted here as G’k (jw) for the path ak h b; in the

k-th subgraph. For k = 1 the subgraph is just the original

graph itself, and we have QI (jw) = G1 (jw). Then as shown

s’

-a’l
1

1/ I al+

- b~1 bl -

~&

‘?f ’k. l (/ I a k.l+

~b’k.l J b,_, -

‘a’k+l k~l ak+l+

‘b’k+, bk+l -

Fig. 5. Equivalent

s

circuit corresponding to the k-th subgraph with
tl=tz=...=t~=o.

in the Appendix, ~k (~w) is given by

~k(jw) = 1 + det ~m-k+l/det &fm_k,

where

kfn-k+~ =

il!f~ =

(5)

Mim = (i, m) component of JMn,

Since det M.-1 = A,, (Mn), we have

from (3) and (5) as it should be.

An ‘equivalent circuit corresponding to the k-th subgraph

with tk = Ois shown in Fig. 5, where ideal isolators (= ideal

circulators with port I terminated by the reference impedance

2.) are inserted at ports 1 w (k – 1). Such insertion of ideal

isolators is also utilized to calculate ~k (jw) in the numerical

simulation.

D. Condition for Stabili@ of Generalized Equivalent Circuit

It is usually justifiable to assume that the active devices

themselves are inherently stable. Thus, all the matrix elements

of S do not have poles with positive real part when viewed

as functions of the complex angular frequency s. Then the

matrix elements of M. and hence det &fk (1 ~ k ~ n) have

no pole with positive real part. Based on this assumption, the

numbers, .Zk and pk, of the right-half s-plane zeros and poles

of 1 – ~~ (s), are given from (5) as

.Zk = z (detkfn-k+l), (7)

pk = .z(detMn_k), (8)

where Z( ) denotes the number of right-half s-plane zeros of a

function in the parentheses. Hence, from (2), the number ~Tk
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of clockwise revolutions

1 + Oj is given by

NT~ = z~ – p~

of the Nyquist plot ~~ (ju) around

= z(det ikfn_~+l) – z(det A4m_~), l~~~n.

(9)

By summing up N,~ for k from 1 to n, we obtain

2 N.~ = z(det iWn) – .z(det Mo)

k=l

= .z(det Mm) = z(A),

where .z(detlWo) = z(l) = O.

Therefore, the total number N. of the right-half s -plane

zeros of 1 – G1 (s) is given by

N. = .z(A) = ~ Nr~. (lo)

k=l

In the same manner, we can show that the numbers of the

right-half s-plane zeros of 1– Gi (s) for i # 1 and 1– G: (s) for

1 S i S n are also equal to z(A). Hence, investigation of all

th~N~~s(l ~ k ~ n) for Gl(jw) and {~k(jw), k = 2,. ... n}

suffices for determining z(A). Therefore, a necessary and

sufficient condition for the stability of the generalized circuit

in Fig. 1 is

NZ=~NVk=O.

k=l

We can also determine z~s and p~s if we know the values of

all N~ks. From (7)-(9) we have following recursion formulas

for ~k and p~:

Z1 = z(det M.)

= z(A) = Nz,

PI =Nz –Nrl,

~k = Pk–1, 2Slc~n,—

Pk = pk–1 – Nrk, 2Slc~n.— (11)

As mentioned previously, the generalized circuit in Fig. 1

is the same as the generalized oscillator circuit of an n-port

active device [5], [6]. In [6], the condition for an instability or

oscillation to occur in such a circuit is stated as “det (S S’–In)

is nonzero and real.” This, however, is incorrect, since the

condition does not necessarily mean that z(A)

So far we have assumed that the n-ports S and S’ represent

active devices and passive networks separately. It is evident,

however, that the preceding analysis still applies even if S’

contains some active devices and S some passive networks so

long as the following conditions are satisfied:

i) Any instability within the system necessarily involves

some of the interface ports 1 w n, ii) Matrix elements of

Mn = S’S – In have no right-half s -plane poles.

Such a mixed definition c)f S and S’ corresponds to the case

reported in [3] if we let S = S’.

E. Estimation of Right-Half s-Plane Zero

As well known, if 1 – G,(s) has a right-halfs -plane zero,

denoted here by SO = 00 + jwO (00 > O), an oscillation will

grow with time t in a form of exp[aOt + jwot] until linearity

is no longer justified. Considering G~(s) as a regular analytic

function ofs, we can obtain approximate values for co and WO

from the values of Gt (jwl) and (dG,/dw)w = WI as follows,

where W1 is the angular frequency at which G~(jw) crosses the

real axis. A first-order Taylor expansion of G~(s) – 1 around

jwl and substitution of s = co + jw~ give

O =G~(oo +jWo) – 1

=G~(.jwl) – 1 –j(dG~/dw)w = WI . [CTo +j(Wo – WI)].

From this we obtain, as a first-order approximation,

~0 = —6 sin O/ldGi/dtilti = Wl, (12)

W. =Wl — 6 COS 6/ldGi/dwlw = l+> (13)

where

6 = Gi(jwl) – 1

8 = arg [(dGi/dti)ti = WI].

F. Case of n = 2

When S and S’ are two-ports (n = 2), we have

M2 = S’S – 12

-[

_ Slls(l + s21sj2– 1 S12S{1+ S22S{2
Sllsjl + S21S42 1slzs~l + szzs~z– 1 ‘

A = det M2

= DD’ – S1lS’ 11 – S22S42– S12S;1– S21S{2+ 1,
A11(M2) = S12S41+ S22S42 – 1,

where D = S11S22 – S12S21 and D’ = S{lS~2 – S~2S~l.

Substitution of these into (3) and (5) gives the open-loop

transfer functions G1 (jw) and ~z (jw):

Gl(jw) = (DD’ – &lSjl – SM5’{Z)

/(%2% + 5’22s:2 – 1),

Gz(.iw) = S12S41 + S22S;2.

Hence, from the Nyquist plots of G1 (jw) and ~2 (~w), we

can check the amplifier stability. Conversely, these equations

can be used for S-parameter design of a two-port oscillator

with a feedback external to the active device.

In the case of S = S’ with each S and S’ containing
an identical FET, G1 (jw) reduces to (4) of [3], in which,

however, checking by ~2 (jw) is not mentioned.

When a two-port device is terminated at its input and

output ports by reflection coefficients 171 and 17J, i.e., S; ~ =

171,S.j2 = 1’2, and S{2 = S~l = O, we have

G1(jw) =rl[sll + r2s12s21/(1 – r2s22)],

G2(jw) = r2s22.

For IG2 (jw) I < 1, the condition for instability to occur
becomes

Gl(jw) = rl[sll + r2s12s21/(1 – r2s22)] >1,
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Fig. 6. Equivalent circuits of (a) type A and (b) type B amplifiers. Electrical

lengths of transmission lines are defined at 10 GHz.

at a certain frequency. The threshold condition for instability

is given by G1 (ju) = 1, or

A = r1r2(s11s22 – s12s21) – rlsll – r2s22 + 1 = o

in agreement with the oscillation threshold condition given in

[9] and [5].

III. NUMERICAL SIMULATION

Stability of two types of parallel-operated GaAs FET am-

plifiers has been numerically simulated using the HP 85150A

Microwave Design System as a CAD software. Since the

purpose of this section is only to demonstrate the effectiveness

of the present method of stability analysis, the simulated

amplifiers are of a simple configuration. Fig. 6 shows the

equivalent circuits of a) type A and b) type B amplifiers

tentatively designed for the simulation. The areas encircled

with a dashed line represent the active devices corresponding

to S in Fig. 1. Toshiba JS8853-AS medium-power GRAS FET

chips for X-Ku band are used as active devices. The small-

signal equivalent circuit is shown in Fig. 7. The k-factor of
the device is less than 1 below 10 GHz. Though the device

S -parameters calculated from the equivalent circuit are used

in the present simulation, measured S-parameters can be used

as well. Frequency response analysis shows that the type A

and type B amplifiers have a gain > 8 dB for 9.14 – 10.66

GHz and 9.12 – 10.49 GHz with a maximum gain of 11 dB

G+wdl i iR&D

L

Rg=O. 620
Rs=O. 34!2
“=0. 56Q
Rgs=O. 56!2
Rgd=O. OIL?
Rds=80Q. . . .. . .. ....

I
‘s

Ls

s

. . .
gm=155m S

T =7. 2ps

Cgs=l. 40PF
Cgd=O. 12PF
Cds=O. 62PF
Ls=O. Oln H

Fig. 7. Small-signal equivalent circuit of GaAs FET chip (Toshiba

JS8853-AS) used in type A and type B amplifiers.

at 9.85 GHz and 9.75 GHz, respectively. The gain responses

are independent of the stabilizing resistor Rb.

As mentioned in Section III, Gl (ju) and ~~ (.@) (2 ~ k ~

n) are equal to the reflection coefficient SI 1 looking from

the port I of the ideal circulator inserted in the corresponding

interface port as shown in Fig. 4 and 5, respectively. In the

case of Gk (ju), ideal isolators are also inserted between S

and S’ at ports 1 w (k – 1). Examples of the actual circuit

layouts for calculating these transfer functions are shown in

Fig. 8 for GI (ju) and G3(~U) of the type A amPlifier.

Type A Amplijier: Fig. 9 shows the calculated Nyquist plots

of the open-loop transfer functions G1 (~~), ~z (~~), Q3 (~w),

and (& (ju) of the circuit in Fig. 6(a) with & = 1 x 109 Q

(virtually open). For frequencies from 0.5 to 18 GHz, only the

G1 (ju) locus encloses once the critical point 1+Oj clockwise.

Thus, we have iVrl = 1 and Nrz = NA = Npd = O, giving
N. = z(A) = 1 from (10). Hence, the amplifier is unstable.

From (11) we also have Z1 = l,pl = Z2 = p2 = Z3 = p3 =

Z4 = p4 =’0.
In Fig. 9, jl = 7.0714 GHz, Gl(-jwl) = 1.088, and

(dG1/dj)f=fl = ().54e-i’010, where ~1 = w1/zT is the

frequency at which G1 (ju) crosses the real axis. Then from

(12) and (13) we obtain an approximate value of so =

ao + juo, the right-half s-plane zero of 1 – G1 (~~) > aS

00 = 1.02 x 109 s–l and ~o = wO/27r = 7.0717 GHz. Hence,

an oscillation will grow with time at ~ = .fO until linearity

is no longer justified, It is worth mentioning that, if we start

the stability analysis from port 2 instead of port 1, we have

~1 = 7.0962 GHz for Gz(.jw) which is 24.8 MHz higher

than that for G1 (jw). However, from Gz (jul ) = 1.278 and

(dGz/df) ~=~1 = 2.02e-~7850, we obtain ~0 = 0“85 x 109 ‘-1

and f. = 7.0687 GHz, in a good agreement with those

obtained from the G1 (jw) locus.

Fig. 10 shows how the Nyquist plot G1 (jw) changes with

Rb. At Rb = 240 Q, Gl(jw) = 1 at f = fl = 7.077 GHz.
The amplifier is found stable for Rb <240 Q.

The rf voltages, V1 - V4, VA and VB, at the positions

indicated in Fig. 6(a) have been calculated using “the voltage
probe” function furnished in the Microwave Design System.
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Fig. 8. Examples of circuit layout for calculating GI (jti) and @ (jti) of

type A amplifier.

[a)
--J

Gt(jro)

:1

{c)
tj

Q3(jti)

+

-1 0

(b)

-+

t

1-j Nrz =O

(d)
t

j Q4(jr.o)

-’4E$--1 0 I

I-jNrQ=()

Fig. 9. Nyquist plots of open-loop transfer functions for type A amplifier
calculated for 0.5 — 18 GHz. Rb = 1 x 109 Q.

The amplifier is rf-driven at ~ = ~1 through the port I of

the ideal circulator inserted at port 1 to calculate G1 (ju).

Table I summarizes the calculated complex rf voltage ratios,

V3/V1, VA/Vi, V4/V2 and VB/V2. It can be seen that V3 and

n

n

n

07 I GHz

077GHZ

+-j

Fig. 10. Dependence of Nyquist plot G1 (jti) on Rb for type A amplifier.

TABLE I
CALCULATED COMPLEX RF VOLTAGES IN TYPE A AMPLIFIER NORMALIZED

BY VI AND V2 WHEN RF SIGNAL WITH f = fl IS INJECTEDFROM
IDEAL CIRCULATOR INSERTEDAT PORT 1 IN THE CIRCUIT OF FIG. 6(a)

R, (Q) v, /v, VA /v, v. Iv, v. /v,

1 x 10’ -1.05 -O.17j -O. 01+0. 06j -1.02 -O.01+0.03j

480 -1.02 -O.08j o. 03] -1.01 0. 00+0. Olj

240 -1.00 0.00 -1.00 0.00

V4 are almost completely in opposite phase with VI and

V2, respectively, while VA and VB are negligibly small in

magnitude as compared to VI and V2, regardless of &. This

indicates that the instability mode of the amplifier is the odd-

mode. In fact, by postulating the odd-mode oscillation in the

circuit of Fig. 6(a) and analyzing half the circuit with the drain

side combining pQint shorted as in [2], we obtained S11 =

1.028 Z 180° at ~ = 7.066 GHz, around which oscillations

could be supported. This is in excellent agreement with the

simulation by our method.

Type B Amplifier: Fig. 11 shows the Nyquist plots of

‘1(~~), G2(@J), ~3(~~), E4(@), ~5(.@), l&(.ju) for 0.5 –
18 GHz of the type B amplifier in Fig. 6(b) with & =

1 x 109 Q. It can be seen that the amplifier is unstable since

Nvl = N.A = 1, NV2 = N,4 = NY5 = N,6 = O, and

NZ = z(A) = 2.

The dependence of N,k (1 ~ k ~ 6) and N, on & is

summarized in Table II, where ~k and Pk obtained from (11)

are also listed. By decreasing & just below 360 ~, NZ reduces

from 2 to 1. For R,b <120 Q we have NZ = O and the amplifier

becomes stable. It is to be noted that, with the reduction of

&, N.l changes as l(Rb ~ 360 Q) -+ 0(360 ~ > Rb >

300~)” ~ 1(300~” > Rb ~ 120~) ~ ()(& < 120~), while

NV3 changes only once from 1 to O at around Rb = 300 fl.

Table II also shows that only the Nyquist plots of GI (ju) and
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(a) li Gt(iw)

-1

).5GHZ

1-i Nr3= I

(e) -j Q5( jfi)

-1 0

1--j
Nrs=O

(b)

t
J Q2(jd

J-i Nr2=0

(d)
t

j Q4(jti)

J-j Nr4=0

(f) -j Q6( jd

-1 I
,

J-J Nr6= O

Fig. 1L Nyquist plots of open-loop transfer functions for type B amplifier

calculated for 0.5 – 18 GHz. & = 1 x 1090.

~~(jw) are practically enough to determine N. in the present

case.

Fig. 12 shows part of the Nyquist plots of G1 (jw) for

various values of Rb. The frequency ,fl at which G1 (jti)

crosses the real axis is 6.97 w 6.98 GHz for the loci @ N @.

Note the peculiarity of the loci @, ~, and @ near the critical

point 1 + Oj. Such behaviors can be explained by the fact that

G1 (s) has within itself another feedback loop whose closed-

loop transfer function has an s-plane pole, SP = OP + jUP,

near the critical point, with OP being positive for Rb >300 Q

and negative for Rb < 300 Q.

In order to get insight into instability modes, the complex

rf voltages, V1 AJ VG, VA and VB at the positions indicated

in Fig. 6(b) have been calculated at j = $1 = 6.97 N

6.98 GHz in the same way as for the type A amplifier

by driving an rf voltage from port 1. Table III shows the

calculated rf voltages, V4/V2, V6/V2 and ViJ /v2 With Rb

as a parameter. Vs/Vl, V5/V1 and VA/Vi are found almost

eqUal to V4/V2, V6/V2 and VB /v2, respectively. From such
calculations, two fundamental voltage modes for instabilities,

each classified further into two types, have been identified as

shown in Table IV, where the rf voltage at the output port of

each FET is shown in relative magnitude and phase by the

number and the + sign, respectively. Note that FET’s #1 and

#3 are always electrically symmetric in Fig. 6(b).

When Rb = 1 x 109 Q (virtually open), the instability is

mode I and either type @ or type @, since all the three FET’s

are electrically symmetric. Reduction of Rb begins to exclude

FET #2 from such symmetry and brings about a gradual

change in types and modes. By decreasing Rb to 360 Q, the

instability reduces to type @ of mode I. For Rb = 3600,

however, the type @ of mode II prevails. At Rb = 120 Q,

below which the amplifier is stable, we have the type @ of

mode II instability.

IV. CONCLUSION

Based on a generalized equivalent circuit, the stability of

multidevice amplifiers has been discussed in a unified and

comprehensive manner from the viewpoint of feedback-loop

stability. By introducing open-loop transfer functions, G1 (jw)

and {~~(jti),k = 2,”.”, n}, and expressing them in terms

of the determinant and the minor determinants of kf~ =’

S’S – In, ithas been shown that the stability of the amplifiers

can be completely characterized from the Nyquist plots of the

n transfer functions. The analysis in this work is based on

the assumptions that active devices themselves are inherently

stable, no coupling exists between them within the n-port S
and any feedback-loop instability can be observed at some of

the interface ports. These assumptions seem to be justified in

most cases.

It is also shown that insertion of an ideal circulator and

isolators at the interface ports gives a practical means to

calculate the Nyquist plots and the voltage distributions for

possible instabilities with commercially available linear circuit

simulators. The usefulness of the present analysis has been

verified by numerical simulations of two types of parallel-

operated GaAs FET arriplifiers. The present method can be

applied to stability simulations of more complexed multidevice

amplifiers including distributed amplifiers and stable cascaded

amplifiers. The Nyquist plots of transfer functions will enable

us to visually investigate the effect of parameter changes on

stability and to estimate the stability margin of the system.

APPENDIX

Proof of(3): The proof of (3) is given only for i = 1, since

the proof for other i can be performed quite similarly. Keeping

t~ always equal to 1 for all m(l ~ m ~ n) in Fig. 2, we have

Then from the definition of S-matrices, S and St, we have

[!=s’[!=s’[
‘s’s[!=(Mn‘A1)
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TABLE II
DEPENDENCEOF N.k, Nx, :k, AND pk ON Rb (0) IN TYPE B AMPLIFIER (1 ~ k ~ 6)

,, I
, R, >360 ; 360>Rb >300 [ 3oo>Rb ~120 ; Rb <120
, ---------------------- l----------------------- ,-----------------------, ----------------------

! , t
, , , I ,

G,

G,—

g,

G,—

G,—

G,—
I , I

61
, I I, I ,1 ,

Nz =~Nr,~
o

2
II 1 1 ,I ,

k=l i
o

(I !I t

0.5j.

Rb

iogn

@ 360 n

@3ton

@275fl d

@ 120f)

@ 5on

-0.5j

Fig. 12. Dependence of Nyquist plot GI (jk) on & for type B amplifier.

By definition G1 (jw) is equal to b~ /al with tl = O and

t’2=t3 =.. . tn = 1 in Fig. 2, and we have

By substituting (A2) into (Al) we obtain

!
al’

b;

=(~n+~n) . ,

b~

(A3)

TABLE III
CALCULATED COMPLEX RF VOLTAGES IN TYPE B AMPLIFIER NORMALIZED

BY V2 WHEN RF SIGNAL WITH ~ = .fl IS INJECTEDFROM IDEAL

CIRCULATOR INSERTEDAT PORT 1 IN THE CIRCUIT OF FIG 6(b)

R, (Q) v. Iv, v. /v, v. /v,

1 Xlo” –0.51 –0.51 O. Ol_i

360 –2.03+0.01] 1. 03+0. 01] 0.00

300 –4.3 –231j 3.5 +232j 1.26+ 0.21j

120 0.00 – 1.00 0.00

10

Solution
for z =

M12M13 . . . Mlm

M22M23 . . . M2n

M32M33 . . . M3n
. .. .. . “.:

Mn2Mn3 . ~. Mnn

Mll + 1

M21

M31

(A4)
of the linear simultaneous equations (A4) gives [3)
1:

Gl(jw) = b~/al =
–AH(M.) – ~;.l MrnlAmI(~n)

–AII(M.)
det M.

=1+
All(Mn)”

where Aml (&fm ) is the cofactor of (m, 1) component of M..

Proof of (5): By definition ~~ (jw) is equal to b~/ak with

tl=tz =...= tk–l=tk =(),tk+ l=. ..=tn=l,arl(j

a1=a2 z... = a&1 = O in Fig. 2, and we have

a~=b~, k+l~m <n. (A5)
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TABLE IV

VOLTAGE DISTRIBUTION MODES AND TYPES FOR INSTABILITIES

IN TYPE B AMPLIFIER. THE NUMBER AND + SIGN INDICATE THE

RELATIVE MAGNITUDE AND PHASE OF THE RF V OLTAGEAT THE

OUTPUT PORT or? EACH FET IN THE CIRCUIT OF FIG. 6(b)

MODE ; TYPE ; FET #1 FET #2 FET #3
i,

(V2 ) (v. ) (V6 )

tll: 71 &l o
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p~~l o 71

Substitution of (A5) into (Al) gives

= (Mn +1.)

For b;, bj+l, . . . . b;, we obtain

b;

[:1 11

ak

b~+l bi+l
= (~n-k+, + ~n-k+l) : > (A6)

b; b;

where in.--~+l is the (n – k + 1) x (n – k + 1) identity matrix.

Equation (A6) can be solved for bj in quite the same way as

solving (A3), and we obtain (5):

det ikf..~+l
&(@) = b~/ak = 1+ det M _k .

n
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