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Stability Analysis and Numerical
Simulation of Multidevice Amplifiers

Motoharu Ohtomo, Member, IEEE

Abstract—Stability analysis of multidevice amplifiers is made
on a generalized circuit comprising two n-ports with S-matrices
S (active devices) and S’ (passive networks) connected at n
interface ports. Open-loop transfer functions defined for a signal-
flow graph and its (n — 1) subgraphs of incident and reflected
waves at the interface ports are expressed in terms of det M,
and its minors, where M,, = S$'S — I, and I, = n X n
identity matrix. It is shown that the Nyquist plots of the n
transfer functions completely characterize the number of right-
half complex-frequency-plane zeros of det M,, and hence the
amplifier stability. Insertion of an ideal circulator and isolators at
the interface ports enables one to calculate the Nyquist plots and
voltage distributions of possible instabilities using commerciaily
available linear circuit simulators. Numerical simulations for two
types of parallel-operated GaAs FET amplifiers are performed
to verify the usefulness of the analysis to design-phase check on
multidevice amplifier stability. '

1. INTRODUCTION .

DD-mode oscillations, also called push-pull-mode or
OdifferentiaLmode oscillations, often cause troublesome
problems to parallel-operated devices and amplifiers such as
discrete power MOSFET’s, internally-matched power GaAs
FET’s and power MMIC amplifiers [1]-[3], since this type
of parasitic oscillations or instabilities not only gives rise to
spurious signals but also sometimes lead to catastrophic fail-
ures of active devices [1]. In order to avoid such instabilities,
design-phase analysis is very important.

Kassakian et al. [1] analyzed paralleled VHF power MOS-
FET’s by postulating a differential-mode operation of the
linear circuit and applying the Routh—-Hurwitz criterion to
its characteristic polynominal zeros. Practical use of this
method, however, is limited to a case of lumped-constant
circuits with relatively small number of elements. Meanwhile,
Freitag et al. [2] analyzed cluster-matched power MMIC’s
with two parallel-operated GaAs FET’s by assuming an odd-
mode oscillation and calculating S1; (S -parameter) of the half
circuit. This method is attractive at microwave frequencies,
where lumped- and distributed-constant circuits intermingle
and S-parameters are most convenient to circuit designs. Based
on a signal-flow graph of S-parameters and the odd-mode
assumption, Takagi et al. [3] analyzed the oscillations in GaAs
power FET’s and power MMIC amplifiers consisting of two
parallel-operated FET’s from the viewpoint of loop oscillation.
The analysis methods in [2] and [3], however, are applicable
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only to a circuit configuration with symmetry, and the mode
of instabilities such as the odd-mode must be postulated a
priori. To be free from such limitations, a general yet practical
approach is desirable.

This paper presents a general and comprehensive method
of analyzing and simulating stability of multidevice amplifiers
including parallel-operated amplifiers. In Section II, stability
analysis is performed on a generalized equivalent circuit, in
which two n-ports representing active devices and passive
imbedding networks with S-matrices S and §’, respectively,
are connected at n interface ports. The circuit is viewed as a
multiloop feedback system with a signal-flow graph for node
signals of incident and reflected waves at the interface ports.
Defining n open-loop transfer functions for the original graph
and its subgraphs and obtaining explicit expressions for these
transfer functions in terms of § and §’, the stability of the
system is analyzed from the viewpoint of the Nyquist criterion.

It is to be mentioned that the stability of a multiloop
feedback system was discussed in a general manner by Mason
and Zimmermann [4] using the concept of graph determinant
and partial return differences for a signal-flow graph. Though
very suggestive, their analysis is not applicable to a circuit
analysis as in the present work where one cannot draw a full
and concrete signal-flow graph of the circuit.

In Section III, numerical stability simulations of amplifiers
with two and three parallel-operated GaAs FET’s are given
to demonstrate the usefulness of the present analysis. It is
also shown that insertion of an ideal circulator and isolators
at the interface ports enables us to use commercially-available
linear circuit simulation softwares, thereby greatly facilitating
numerical simulations.

II. STABILITY ANALYSIS OF
GENERALIZED AMPLIFIER CIRCUIT

A. Open- and Closed-Loop Transfer Functions
and Nyquist Criterion

An amplifier consisting of multiple active devices and
passive imbedding networks can generally be represented
by an equivalent circuit as shown in Fig. 1, where n-ports
with S-matrices S and §’, hereafter called the n-port S
and §’, are connected at interface ports 1 ~ n. Unless
otherwise mentioned, we regard the n-ports S and S’ as
representing the active devices and the passive imbedding
networks, respectively, We also regard S and S’ as having
no independent internal sources. Each active device can be
a single- or multi-port. Without loss of generality we can
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Fig. 1. Generalized equivalent circuit of multidevice amplifier, where n-ports

S and S’ represent active devices and passive imbedding networks, respec-
tively.

assume that no coupling exists between active devices within
the n-port S. Waves incident to and reflected from the n-ports
are denoted as a; and a/, and b; and b}, respectively, at port
i (1 £ 1 £ n). Apparently, the generalized circuit defined here
is the same as the generalized oscillator circuit of an n-port
active device [5], [6].

Fig. 1 can be considered as a multiloop feedback system. If
there is any feedback-loop instability within the system, some
of the interface ports must be involved in the unstable loop,
since the device activeness is the only source of instability.

If we regard {a;, b;,a},b;,4 =1,2,---,n} as node signals,
a signal-flow graph [4] of Fig. 1 can be written as in Fig. 2,
where ¢; = 1 and ¢; = 1 are the transmissions or the gains
of branches b, — a, and b, — a} (1 £ ¢ < n), respectively.
When we focus on a; and b, at port ¢, we have a signal-flow
graph of a feedback loop as shown in Fig. 3, where G;(s)
is a transmission or a transfer function of the path a; — ¥
with s as the complex angular frequency. Regarding a, as
a signal source, G;(s) is the open-loop transfer function of
the feedback loop. The closed-loop transfer function H;(s) is
then given by

Hi(s) = Gi(s)/[1 - Gi(s))- )

The open-loop transfer function defined here is equivalent
to the circular function (c-function) recently introduced by
Martinez et al. for S-parameter design of oscillators [7].

When we take a} as a signal source instead of a;, we have
a feedback loop similar to Fig. 3, with open- and closed-
loop transfer functions G(s) and H/(s). Though the paths
including nodes (a;,b;) and (aj,b,) look different from the
signal-flow graph point of view, consideration of only n paths
containing the nodes a; and b(¢ = 1,2,---,n) is enough to
examine the amplifier stability as will be clarified later.

A necessary and sufficient condition for the feedback loop
to be stable is that poles of H;(s) or zeroes of 1 — G;(s)
have negative real parts. The well-known Nyquist criterion is
a graphical method that enables us to check the feedback loop
stability from how the complex locus or the Nyquist plot of
—@G,(jw) encloses the point —1 + 05 [8].

For convenience of our analysis, we will restate the Nyquist
criterion in terms of G;(jw). Let z and p be the numbers of
right-half s-plane zeros and poles of 1 — G;(s), respectively.
1 — Gi(s) and G,(s) have the same poles. Then the number
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Fig. 3. Signal-flow graph of feedback loop with respect to a, and b..

N, of clockwise revolutions around the critical point 1 + Oy
of the Nyquist plot of G;(jw) for w varying from —oo to 400
is given by

N, =2z—-p. )]

Negative N, means that the number of the counterclockwise
revolutions is equal to —/V,.. Thus, the knowledge of not only
N,. but also p is required to see if z is equal to 0 or not.
Since zeros and poles of a physical network function occur in
complex conjugate pairs, the number of clockwise revolutions
of the Nyquist plot for w > 0 (N,./2) is sufficient to apply the
stability criterion and we will hereafter regard this number as
N, when we consider only positive frequencies.

When p = 0 is guaranteed, the system is stable if N, = 0
or G;(jw) does not enclose the point 1 + 0j clockwise.
Conversely the system is unstable if

Gi(jw1)7 i 1.

where w; is the angular frequency at which the Nyquist plot
G;(jw) crosses the real axis clockwise (arg|G;(jwi)] = 0°
and —180° < arg[(dG;/dw)w = w;] < 0°). This corresponds
to the criterion used in [2] and [3] for checking the stability
of amplifiers with a single loop. In amplifiers with multiple
loops, however, p = 0 is not always guaranteed.



OHTOMO: STABILITY ANALYSIS AND NUMERICAL SIMULATION OF MULTIDEVICE AMPLIFIERS 985

“—a’'y 1 aq—

—>b’1

b1<—

—b’,
L]
.
L]
—a'n an—>
O
—-b, n b <

Fig. 4. Equivalent circuit corresponding to the signal-flow graph of Fig. 2
with?, =0,ty =lfor 1S k#iSnandt) =1for1 <k <n.

B. Expressions of G;(jw) and H;(jw) in Terms of S and S

It can be shown that the preceding open- and closed-loop
transfer functions at port 4 (1 < 4 < n) are given as a function
of § and S’ by

where
M,=88-1I,,
A =det M,,,

A;i(M,) = cofactor of (4,4) component of M,

and I,, is the n x n identity matrix. The proof of (3) is
given in the Appendix. From (1) and (3) we obtain (4). The
expressions for G}(jw) and H](jw) can be obtained by simply
interchanging S and S’ in (3) and (4). Note that A remains
unchanged since det(SS’ — I;) = det($'S ~I,,) = A.

An equivalent circuit corresponding to the signal-flow graph
in Fig. 2 with t; = 0,¢y = 1l for 1 £ k # ¢ < n and
t, = 1for 1 £ k < n is shown in Fig. 4, where the three-
port circulator inserted at port i between S and §’ is an ideal
circulator that has S-parameters Si,,, = 1 for (k,m) = (II,
D), (1L, 1), @, 1) and Sk = O for other (k,m). Hence,
G;(jw) is equal to the refiection coefficient Sy at port I of the
circulator. Such equivalence is found very convenient to the
numerical simulation described in Section IIl, since insertion
of an ideal circulator enables one to calculate G;(jw) using
the same CAD software as for the amplifier design.

C. Open-Loop Transfer Functions in Subgraphs

If we set t; =t = --- = 1 = 0 in Fig. 2, we obtain a
subgraph [4], called here the k-th subgraph. The subgraph may
retain some of the feedback loops in the original graph, With
a1 =ag =+ = ag—1 = 0, we define an open-loop transfer
function denoted here as G, (jw) for the path a, — b}, in the
k-th subgraph. For £ = 1 the subgraph is just the original
graph itself, and we have G, (jw) = G1(jw). Then as shown
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Fig. 5. Equivalent circuit corresponding to the k-th subgraph with
tp =ty =--- =t = 0.

in the Appendix, G, (jw) is given by
G (jw) =1+ det M,,_j1/det M,,_y,

1<kSn, ©)
where
M, My My,
Mey1y Mpgpies Myi1n
Mn—-k+1 = : . . B

Mnk Mn,k+1 Mnn
M, =1,
M;., = (i,m) component of M,,, 12i,m<n

(©)

Since det M,,_1 = A,,(M,), we have G, (jw) = G1(jw)
from (3) and (5) as it should be.

An equivalent circuit corresponding to the k-th subgraph
with ¢ = Ois shown in Fig. 5, where ideal isolators (= ideal
circulators with port I terminated by the reference impedance
Zy) are inserted at ports 1 ~ (k — 1). Such insertion of ideal
isolators is also utilized to calculate G (jw) in the numerical
simulation. :

D. Condition for Stability of Generalized Equivalent Circuit

It is usually justifiable to assume that the active devices
themselves are inherently stable. Thus, all the matrix elements
of S do not have poles with positive real part when viewed
as functions of the complex angular frequency s. Then the
matrix elements of M,, and hence det My (1 £ k < n) have
no pole with positive real part. Based on this assumption, the
numbers, z; and pg, of the right-half s-plane zeros and poles
of 1 — G, (s), are given from (5) as

2 = 2 (det My 11), @)
pr = z(det My, 1), ®)

where z( ) denotes the number of right-half s-plane zeros of a
function in the parentheses. Hence, from (2), the number N,
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of clockwise revolutions of the Nyquist plot G (jw) around E. Estimation of Right-Half s-Plane Zero

14 05 is given by

Nep =2 — D&

= z(det M,_j41) — 2(det M), 1Sk n.

©

By summing up N, for k£ from 1 to n, we obtain

E Ny = z(det M) — z(det M)
k=1
=z(det M,,) = z(A),

where z(det My) = 2(1) = 0.
Therefore, the total number N, of the right-half s -plane
zeros of 1 — G4(s) is given by

N, =z2(A)= Xn:Nrk- (10)
k=1

In the same manner, we can show that the numbers of the
right-half s-plane zeros of 1—G;(s) for i # 1 and 1-G’(s) for
1 £ 4 £ n are also equal to z(A). Hence, investigation of all
the N/, s(1 £ k £ n) for G1(jw) and {G, (jw),k=2,---,n}
suffices for determining z(A). Therefore, a necessary and
sufficient condition for the stability of the generalized circuit
in Fig. 1 is

N, = Xn:Nrk =0.
k=1

We can also determine 2, s and pj, s if we know the values of
all N/, s. From (7)~(9) we have following recursion formulas
for z, and py:

z1 = z(det M,)

= 2(A) = N,,
= N, - Nr17
Ze =pr-1, 2=kZ=n,

2<k<n. an

As mentioned previously, the generalized circuit in Fig. 1
is the same as the generalized oscillator circuit of an n-port
active device [5], [6]. In [6], the condition for an instability or
oscillation to occur in such a circuit is stated as “det(S 8'—1I,,)
is nonzero and real.” This, however, is incorrect, since the
condition does not necessarily mean that z(A)

So far we have assumed that the n-ports S and S’ represent
active devices and passive networks separately. It is evident,
however, that the preceding analysis still applies even if S’
contains some active devices and S some passive networks so
long as the following conditions are satisfied:

1) Any instability within the system necessarily involves
some of the interface ports 1 ~ n, ii) Matrix elements of
M, = 8'S — I, have no right-half s -plane poles.

Such a mixed definition of § and S’ corresponds to the case
reported in [3] if we let § = §'.

Pk = Pr—1 — Nrg,

As well known, if 1 — G,(s) has a right-half s -plane zero,
denoted here by s, = 0, + jw,(0, > 0), an oscillation will
grow with time ¢ in a form of exp[o,t + jw,t] until linearity
is no longer justified. Considering G;(s) as a regular analytic
function of s, we can obtain approximate values for o, and w,
from the values of G,(jw:) and (dG,/dw)w = w; as follows,
where w; is the angular frequency at which G;(jw) crosses the
real axis. A first-order Taylor expansion of G;(s) — 1 around
jwi and substitution of s = o, + jw, give

0=Gi(o, + jw,) — 1
=G;(jw1) = 1 = j(dGi/dw)w = w1 - [00 + j(wo — w1)].
From this we obtain, as a first-order approximation,

0, =—6 8in §/|dG;/dw|w = wy,
wo =w1 — 6 cos 8/|dG;/dw|w = wy,

(12)
(13)
where

6= Gi(jwﬂ -1

§ = arg [(dG;/dw)w = w1].

F. Case of n = 2

When S and S’ are two-ports (n = 2), we have
M,=88-1,
— SnSil + 521512 - 1 Slzsil + 522512
81185, + 52185 S1285; + 82285 — 1|’
A = det My
=DD' — 511511 — 522552 — SmSél — 5215’12 +1,

All(Mz) = Sleél + S2ZSé2 - 13
where D = 511522 — 512521 and D' = S{lSQZ - SiZSél
Substitution of these into (3) and (5) gives the open-loop
transfer functions Gy (jw) and G,(jw):

G1(jw) = (DD’ - 81181, — 52151,)
/(512521 + 822855 — 1),
Gy(jw) = S1285; + S2259,.

Hence, from the Nyquist plots of G (jw) and G,(jw), we
can check the amplifier stability. Conversely, these equations
can be used for S-parameter design of a two-port oscillator
with a feedback external to the active device.

In the case of § = S’ with each S and S’ containing
an identical FET, G1(jw) reduces to (4) of [3], in which,
however, checking by G,(jw) is not mentioned.

When a two-port device is terminated at its input and
output ports by reflection coefficients I'; and I's, i.e., S1; =
I'1,8% =Ty, and Si, = S%, = 0, we have

Gi(jw) =T1[S11 + 9812821 /(1 — T'5822)],

Gy (jw) =T'2S55;.
For |G,(jw)| < 1, the condition for instability to occur
becomes

G1(jw) =T1[S11 + 2812821 /(1 — T25922)] > 1,
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Fig. 6. Equivalent circuits of (a) type A and (b) type B amplifiers. Electrical
lengths of transmission lines are defined at 10 GHz.

at a certain frequency. The threshold condition for mstablhty
is given by G1(jw) = 1, or
A =T15(S11522 — S12821) —T'1811 —T2822+1=0

in agreement with the oscillation threshold condition given in
[9] and [5]. '

III. NUMERICAL SIMULATION

" Stability of two types of parallel-operated GaAs FET am-
plifiers has been numerically simulated using the HP 85150A
Microwave Design System as a CAD software. Since the
purpose of this section is only to demonstrate the effectivenes
of the present method of stability analysis, the simulated

amplifiers are of a simple configuration. Fig. 6 shows the
~ equivalent circuits of a) type A and b) type B amplifiers
tentatively designed for the simulation. The areas encircled
with a dashed line represent the active devices corresponding

to S in Fig. 1. Toshiba JS8853-AS medium-power GaAs FET .

chips for X-Ku band are used as active devices. The small-
signal equlvalent circuit is shown in Fig. 7. The k-factor of
the device is less than 1 below 10 GHz. Though the device
S -parameters calculated from the equivalent circuit are used
in the present simulation, measured S-parameters can be used
as well. Frequency response analysis shows that the type A
and type B amplifiers have a gain = 8 dB for 9.14 — 10.66
GHz and 9.12 — 10.49 GHz with a maximum gain of 11' dB

Rg Cgd Red Rd
Go “l VW —wW\—o D

Ces - '

gm

. C\D 1 Cdss Ris
SRs gn=155mS |
620 T =7.2ps |
34Q z i
. 560 Ls iCgs=1. 40pF
iRgs=0. 560Q o :Cgd=0. 12pF
:Rgd=0. 019 ECdSéO. 62,pF§
Ris=80Q S fLs =0. 01 nH;

Fig. ‘7. Small-signal equivalent circuit of GaAs FET chip (Toshiba

. JS8853-AS) used in type A ‘and type B amplifiers. -

at 9.85 GHz and 9.75 GHz, respectively. The gain responses
are 1ndependent of the stabilizing resistor Rp.

As mentioned in Section IIT, G; (jw) and G, (jw)(2 S k <
n) are equal to the reflection coefficient Sy; looking from
the port T of the ideal circulator inserted in the corresponding
interface port as shown in Fig. 4 and 5, respectively. In the

- case of G (jw), ideal isolators are also inserted between S

and 8 at ports 1 ~ (k — 1). Examples of the actual circuit
layouts for calculating these transfer functions are shown in
Fig. 8 for G1(jw) and G5(jw) of the type A amplifier.

Type A Amplifier: Fig. ‘9 shows the calculated Nyquist plots
of the open-loop transfer functions Gl(]w) G,y (jw), G3(jw)
and G,(jw) of the circuit in Fig. 6(a) with Ry = 1 X 10°
(virtually open). For frequencies from 0.5 to 18 GHz, only the
G1(jw) locus encloses once the critical point 1+07 clockwise.
Thus, we have N,; = 1 and N,o = N,3 = N4 = 0, giving

N, = z(A) = 1 from (10). Hence, the amplifier is unstable.
From (11) we also have z1 = 1,p1 = 22 = P2 = 23 = P3 =
24 = pg = 0.

In Fig. 9, f1 = 7.0714 GHz, Gl(jwl) = 1.088, and
(dG1/df)s=p1 = 0.54e=9%1" where fi = wi/27 is the
frequency at which G4 (jw) crosses the real axis. Then from
(12) and (13) we obtain an approximate value of s, =
0, + jw,, the rlght -half s-plane zero of 1 — Gi(jw), as
o, =1.02x10°s ! and f, = w,/27 = 7.0717 GHz. Hence,
an oscillation will grow with time at f = f, until linearity
is no longer justified. It is worth mentioning that, if we start
the stability analysis from port 2 instead of port 1, we have
fi = 7.0962 GHz for G2(jw) which is 24.8 MHz higher
than that for G1(jw). However, from G2(jw;) = 1.278 and
(dGo/df) j=1 = 2.02¢77785" we obtain 0, = 0.85x 10?57
and f, = 7.0687 GHz, in a good agreement with those
obtained from the G4(jw) locus.

Fig. 10 shows how the Nyquist plot G1(jw) changes with
Ry. At Ry = 2409Q,G4(jw) = 1 at f = f1 = 7.077 GHz.
The amplifier is found stable for Ry < 240 €.

The 1f voltages, Vi ~ V4, Va and Vg, at the positions
indicated in Fig. 6(a) have been calculated using “the voltage
probe” function furnished in the Microwave Design System.
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Fig. 10. Dependence of Nyquist plot G1(jw) on Ry for type A amplifier.

TABLE I
CALCULATED COMPLEX RF VOLTAGES IN TYPE A AMPLIFIER NORMALIZED
BY Vi AND V2 WHEN RF SIGNAL WITH f = f; 1S INJECTED FROM
IDEAL CIRCULATOR INSERTED AT PORT 1 IN THE CIRCUIT OF FIG. 6(a)

- . R, (Q) Vs /T, Va /Wy Vo /V2 Vo /V2
Si: =§3 (j )
() 1 X10°  -1.05-0.17i -0.01+0.065 -1.02  -0.01+0.03;
Fig. 8. Examples of circuit layout for calculating G (jw) and G5 (jw) of
type A amplifier. 480 -1.02-0.08j 0.03; -1.01 0.0040. 013
240 -1.00 0. 00 -1.00 0.00
(a) (b) + Ga(jw)
T ’\ Vy are almost completely in opposite phase with V; and
-l - 0 | Va, respectively, while V4 and Vp are negligibly small in
. ’ 05 magnitude as compared to V4 and V3, regardless of Rj. This
GHz indicates that the instability mode of the amplifier is the odd-
I i mode. In fact, by postulating the odd-mode oscillation in the
circuit of Fig. 6(a) and analyzing half the circuit with the drain
4'-1 Nrz=0 side combining point shorted as in [2], we obtained Sy; =

) 4] Ga(jw) | 10287180° at f = 7.066 GHz, around which oscillations

] - could be supported. This is in excellent agreement with the
fo n II :L n 6
\ ' ' \\ 18 GHz of the type B amplifier in Fig. 6(b) with R, =

(c)
-l

~ simulation by our method.
/ﬁ\ Type B Amplifier: Fig. 11 shows the Nyquist plots of
0
J -/J 1 x 109Q. It can be seen that the amplifier is unstable since
Ny = Ny3z = lyN'rZ = Ny = N5 = Ny = 0, and
Nr3=0 1. Nra=0 N, = 2(A) = 2.

' G1(jw), Gy (jw), Ga(jw), G4(jw), G5 (jw), Ge(jw) for 0.5 —
The dependence of N,x(1 < k < 6) and N, on R, is

) ) . . summarized in Table II, where z; and p, obtained from (11)
f;i'u?;tef zfrubsgpﬁ)tf 8022511}%:02 t;azsff(r)sﬁgcmns for type A amplifier o also listed. By decreasing R, just below 360 2, N, reduces
from 2 to 1. For R, < 120 we have N, = 0 and the amplifier

. ) ) becomes stable. It is to be noted that, with the reduction of

The amplifier is rf-driven at f = f; through the port I of Ry, N,1 changes as 1(R, > 3609Q) — 0(360Q > Ry >
the ideal circulator inserted at port 1 to calculate G1(jw)- 300 Q) — 1(300Q > Ry > 1200) — 0(R, < 120 Q), while

Table I summarizes the calculated complex rf voltage ratios, N, changes only once from 1 to 0 at around R = 300 Q.
V3/V1,V4/Vi,V4/Va and Vg /Vs. It can be seen that Vs and  Table II also shows that only the Nyquist plots of G (jw) and

-
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.—\
,. ,. & o ) |
i Nra=0
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.
n X ﬂ 0 !
1 Nrs=0 15 Nre=0
Fig. 11. Nyquist plots of open-loop transfer functions for type B amplifier

calculated for 0.5 — 18 GHz. Ry = 1 x 10° Q0.

G4(jw) are practically enough to determine NV, in the present
case.

Fig. 12 shows part of the Nyquist plots of G1(jw) for
various values of R;. The frequency f; at which Gy(jw)
crosses the real axis is 6.97 ~ 6.98 GHz for the loci @ ~ ®.
Note the peculiarity of the loci @), @), and @ near the critical
point 1+ 0j. Such behaviors can be explained by the fact that
G1(s) has within itself another feedback loop whose closed-
loop transfer function has an s-plane pole, s, = o, + jwp,
near the critical point, with o, being positive for Ry > 300 {2
and negative for Ry < 300Q2.

In order to get insight into instability modes, the complex
if voltages, V1 ~ V5,V and Vg at the positions indicated
in Fig. 6(b) have been calculated at f = f; = 6.97 ~
6.98 GHz in the same way as for the type A amplifier
by driving an rf voltage from port 1. Table III shows the
calculated rf voltages, V4/V2,Vs/V2 and Vp/Vy with R,
as a parameter. V3/Vy,V5/Vy and V4/V; are found almost
equal to Vy/V,, Vs/Va and Vp/V3, respectively. From such
calculations, two fundamental voltage modes for instabilitics,
each classified further into two types, have been identified as
shown in Table IV, where the 1f voltage at the output port of
each FET is shown in relative magnitude and phase by the
number and the £ sign, respectively. Note that FET’s #1 and
#3 are always electrically symmetric in Fig. 6(b).

When R, = 1 x 10%Q (virtually open), the instability is
mode I and either type @ or type (@), since all the three FET’s
are electrically symmetric. Reduction of R; begins to exclude
FET #2 from such symmetry and btrings about a gradual
change in types and modes. By decreasing R;, to 3602, the
instability reduces to type @ of mode 1. For Ry = 360,

. however, the type (D of mode II prevails. At B, = 1209,

below which the amplifier is stable, we have the type @ of
mode II instability.

IV. CONCLUSION

Based on a generalized equivalent circuit, the stability of
multidevice amplifiers has been discussed in a unified and
comprehensive manner from the viewpoint of feedback-loop
stability. By introducing open-loop transfer functions, G1(jw)
and {G,(jw),k = 2,---,n}, and expressing them in terms
of the determinant and the minor determinants of M, =
8’8 — I, it has been shown that the stability of the amplifiers
can be completely characterized from the Nyquist plots of the
n transfer functions. The analysis in this work is based on
the assumptions that active devices themselves are inherently
stable, no coupling exists between them within the n-port S
and any feedback-loop instability can be observed at some of
the interface ports. These assumptions seem to be justified in
most cases.

It is also shown that insertion of an ideal circulator and
isolators at the interface ports gives a practical means to
calculate the Nyquist plots and the voltage distributions for
possible instabilities with commercially available linear circuit
simulators. The usefulness of the present analysis has been
verified by numerical simulations of two types of parallel-
operated GaAs FET amiplifiers. The present method can be
applied to stability simulations of more complexed multidevice
amplifiers including distributed amplifiers and stable cascaded
amplifiers. The Nyquist plots of transfer functions will enable
us to visually investigate the effect of parameter changes on
stability and to estimate the stability margin of the system.

APPENDIX
Proof of (3): The proof of (3) is given only for ¢ = 1, since
the proof for other i can be performed quite similarly. Keeping
t! . always equal to 1 for all m(1 £ m < n) in Fig. 2, we have

!
Gy = b,

1€<m<n.

Then from the definition of S-matrices, S and S’, we have

bll (l:l b1
by —g as _g by
b, o, b
ai aq
!/ a2
=5S| .| =M,+1I,) (A1)
(179 ’ (135
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TABLE 11

DEPENDENCE OF N,.t, N,

Zk, AND py ON Ry () IN Type

B AMpLIFIER (1 € k £ 6)

2360 | 360>R, >300 | 300>R, 2120 | R, <120
i k E Nex 2x Dk E Nre Ze  Dx E N« z« Pk i Nk zZx  Px
G: Ged{ 1 { 1 2 1 ¢ 0 1 1 { 1 1 0 & 0 0 0
G:Gw)l 2{ 0 1 1 { 0 1 1 | 0 0 0 i 0 0 0
G: GGw)i 31 1 1 0 i 1 0 ¢ 0 0 0 | 0 0 0
Ge GGw) ! 4 | 0 0 o0 0o 0 0 0 0 0 0 0 0
Gs (Gw) ! 5 | 0o 0 0 0 0 0 0 0 0 0 0 0
GeGw){ 6 0 0 0 { 0 0 0 { 0 0 0 i 0 0 0
6| s | z
N. = N.o| 2 1 L1 L0
1 e e s
TABLE III
CarLcuLateD CoMpLEX RF Vorraces IN TYPE B AMPLIFIER NORMALIZED
BY V5 WHEN RF SIGNAL WITH f = fy IS INJECTED FROM IDEAL
CIRCULATOR INSERTED AT PORT 1 IN THE CIRCUIT OF FIG . 6(b)
Ro Re (Q) Vo Vs Ve /Y, Vo /Y.
® 10°n
@ 360n 1 x10° —0.51 ~0.51 0.013
@ 310N 360 —2.03+0.01j 1.03+0.013 0.00
@ 275 0) 300 —4.3 —231j 3.5 +232] 1.26+0.21j
@ 120 O 120 0.00 —1.00 0.00
® 500N
or by rearranging
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Fig. 12. Dependence of Nyquist plot G (jw) on Ry for type B amplifier. 0 Mo M3 Mo, bf/,,, M

By definition G1(jw) is equal to b)/a; with ¢ = 0 and
y q 1

tp = t3 = ---t, = 1 in Fig. 2, and we have
A = b, 2<m<n. (A2)
By substituting (A2) into (Al) we obtain
bll ay
by by
SN St (A3)

(A4)
Solution of the linear simultaneous equations (A4) gives (3)
for ¢+ = 1:
. A1 (M) =3 MpiApi (M)
G — b/ — m=1 m m n
1(jw) =b1 /a1 AL (M)

14 det M,
All(Mn).

where A1 (My,) is the cofactor of (m, 1) component of M,,.
Proof of (5): By definition G,,(jw) is equal to b}, /az with
tl = tz = e = tk—l = tk = O,tk+1 = = tn = 1, and

a; = ag = -+ = a1 = 0 in Fig. 2, and we have
am = b,

k+1=<mZn. (A5)
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TABLE 1V
VOLTAGE DISTRIBUTION MODES AND TYPES FOR INSTABILITIES
IN TypE B AMPLIFIER. THE NUMBER AND 7= SIGN INDICATE THE
RELATIVE MAGNITUDE AND PHASE OF THE RF V OLTAGE AT THE
Outputr Port OF EacH FET INTHE CirculT OF FIG. 6(b)

WODE | TYPE | FET #1 FET #2 FET #3
N A (Va ) )
1P P
I F F 1 + 2
le il w1 2 F 1
© 0 + 1 F
o CoF 1 0
o 0 F 1
Substitution of (AS5) into (Al) gives
rob r 0 ]
b, | =M,+1,) ,ak
7
bjet1 k+1
Lo ] Ly, ]
For by, by 1, ,b),, we obtain
b;c . Qg
et ~ bt
) =Mup-pp1 +lnky)| ., (A6)
by, by,

where T n—k+1 1 the (n —k+1) X (n — k+ 1) identity matrix.
Equation (A6) can be solved for b}, in quite the same way as
solving (A3), and we obtain (5):

. det M —k—i—l‘
G (jw) = b /ar =1+ —Ee_t-h'
ACKNOWLEDGMENT -

The author wishes to thank N. Tomita, K. Shibata, and S.
Watanabe for helpful discussions and comments.

REFERENCES

[1] "J. G. Kassakian and D. Lau, “An analysis and experimental verification
of parasitic oscillations in paralleled power MOSFET’s,” IEEE Trans. .
Electron Devices, vol. ED-31, no. 7, pp. 959-963, July 1984.

2] R. G. Freitag, S. H. Lee, D. M. Krafcsik, D. E. Dawson, and J. E.
Degenford, “Stability and improved circuit modeling considerations for
high power MMIC amplifiers,” in 1988 IEEE MTT-S Int. Symp. Dig.,
pp. 125-128.

[3]: T. Takagi, Y. lkeda, and S. Urasaki, “Analysis of loop oscillation for
parallel running FET amplifier,” IEICE, Japan, Tech. Rep., vol. 89, no.
138, MW89-59, pp. 69-74, July 1989, in Japanese.

[4] S. J. Mason and H. J. Zimmermann, Electronic circuits, signals, and
Systems. New York: John Wiley, chs. 4, 9, 1960.

[5] A.P.S.Khanna and J. Obregon, “Microwave oscillator analysis,” IEEE
Trans. Microwave Theory Tech., vol. MTT-29, no. 6, pp. 606607,
June 1981. .

6] R. Soares, Ed., GaAs MESFET Circuit Design. ~ MA: Artech House
Inc., ch. 7, 1988. )

171 R. D. Martinez and R. C. Compton, “A general approach for the S-

parameter design of oscillators with 1 and 2-port active devices,” IEEE

Trans. Microwave Theory Tech., vol. MTT-40, no. 3, pp. 569-574,

Mar: 1992. )

J.-C. Gille, M. J. Pélegrin,-and P. Decaulne, Feedback Control Systems.

New York: McGraw-Hill, pp. 268-272, 1959.

[9] G.R. Basawapatna and R. B. Stancliff, “A unified approach to the design
of wide-band microwave solid-state oscillators,” IEEE Trans. Microwave
Theory Tech., vol. MTT-27, no. 5, pp. 379-385, May 1979.

[8

=

Motoharu Ohtomo (M’91) was bormn in Os-
aka, Japan on February 11, 1938. He reccived
the B, E. degree in applied physics from:the
University of Tokyo, Japan in 1960, and the
Dr. Eng. degree from the same university - in
1976. ‘

In 1960 he joined Toshilba Corporation, Kawasaki,
Japan. For the first several years he was mainly
engaged in research and development of ruby maser.
Since 1966 he has been involved in research and
development of microwave semiconducator devices
and circuits. He worked on Gunn—effect devices from 1966 to 1968, IMPATT
and TRAPATT oscillators from 1968 to 1974, and microwave integrated
circuits from 1974 to 1978 at Toshiba R&D Center. From October 1979
until now, he has been with Toshiba Komukai Works, except for two and a

_ half years (late 1985—carly 1988) at the Technical Planning & Coordination

Division in the head office. In 1981 he was appointed the manager of the
Microwave Solid-State Department, Komukai Works. His current interests are
mainly in the field of microwave- and millimeter-wave devices and circuits.

Dr. Ohtomo is a member of the Institute of Electronics, Information and

Communication Engineers of Japan.



